Immobilization after injury alters extracellular matrix and stem cell fate

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate.

Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was s...

متن کامل

Matrix Control of Stem Cell Fate

A key challenge in stem cell research is to learn how to direct the differentiation of stem cells toward specific fates. In this issue of Cell, Engler et al. (2006) identify a new factor regulating stem cell fate: the elasticity of the matrix microenvironment. By changing the stiffness of the substrate, human mesenchymal stem cells could be directed along neuronal, muscle, or bone lineages.

متن کامل

Extracellular matrix elasticity directs stem cell differentiation.

Stem cell differentiation is regulated by a variety of cues including growth factors and extracellular matrix (ECM), although the role that the ECM has in this process is less understood. Here we provide examples of how the composition, concentration, and elastic modulus of matrix as well as its temporal and spatial location plays a key role in regulating cell fate. Natural variation of matrix ...

متن کامل

Control of stem cell fate by physical interactions with the extracellular matrix.

A diverse array of environmental factors contributes to the overall control of stem cell activity. In particular, new data continue to mount on the influence of the extracellular matrix (ECM) on stem cell fate through physical interactions with cells, such as the control of cell geometry, ECM geometry/topography at the nanoscale, ECM mechanical properties, and the transmission of mechanical or ...

متن کامل

The extracellular microscape governs mesenchymal stem cell fate

Each cell forever interacts with its extracellular matrix (ECM); a stem cell relies on this interaction to guide differentiation. The stiffness, nanotopography, protein composition, stress and strain inherent to any given ECM influences stem cell lineage commitment. This interaction is dynamic, multidimensional and reciprocally evolving through time, and from this concerted exchange the macrosc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Clinical Investigation

سال: 2020

ISSN: 0021-9738,1558-8238

DOI: 10.1172/jci136142